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1 Erdös-Surányi sequences

In this section we present a special class of sequences of distinct
positive integers, which give special representations of the integers.
We say that a sequence of distinct positive integers {am}m≥1 is a
Erdös-Surányi sequence if every integer may be written in the form

±a1 ± a2 ± · · · ± an

for some choices of signs + and −, in infinitely many ways.
As a general example of Erdös-Surányi sequences we mention, for
every k ∈ N, an = nk (see J.Mitek,‘79,[16]). For instance, for
k = 1 we have the representation

m = (−1 + 2) + (−3 + 4) + · · ·+ (−(2m − 1) + 2m) + · · ·+
[(n + 1)− (n + 2)− (n + 3) + (n + 4)]︸ ︷︷ ︸

=0
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For k = 2, we have the original result of Erdös and Surányi
mentioned as a problem in the book [12] and as Problem 250 in the
book of W.Sierpnski [18]. A standard proof is based on the identity
4 = (m + 1)2 − (m + 2)2 − (m + 3)2 + (m + 4)2 and on the basis
cases

0 = 12 + 22 − 32 + 42 − 52 − 62 + 72, 1 = 12

2 = −12 − 22 − 32 + 42, 3 = −12 + 22.

For k = 3, one may use the identity

−(m + 1)3 + (m + 2)3 + (m + 3)3 − (m + 4)3

+(m + 5)3 − (m + 6)3 − (m + 7)3 + (m + 8)3 = 48

and induction with a basis step for the first 48 positive integers.
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An interesting example of Erdös-Surányi sequence is given by the
squares of the odd integers. The proof by step 16 induction is
based on the identity
16 = (2m + 5)2 − (2m + 3)2 − (2m + 1)2 + (2m − 1)2, and on the
basis cases

0 = −12 + 32 + 52 − 72 + 92 − 112 − 132 + 152

1 = 12

2 = 12 + 32 + 52 − 72 + 92 − 112 − 132 + 152

3 = 12 − 32 + 52 + 72 + 92 + 112 + 132 − 152 − 172 − 192 + 212

4 = −12 − 32 − 52 − 72 + 92 − 112 − 132 + 152 − 172 + 192

5 = 12 + 32 + 52 + 72 + 92 + 112 + 132 + 152 − 172 − 192 − 212

−232 − 252 + 272 + 292

6 = −12 − 32 + 52 − 72 − 92 + 112

7 = 12 + 32 + 52 + 72 + 92 + 112 + 132 + 152 + 172 − 192 + 212

−232 − 252 − 272 + 292

8 = −12 + 32
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9 = −12 − 32 + 52 − 72 − 92 − 112 − 132 − 152 − 172 + 192−
−212 − 232 − 252 − 272 + 292 + 312 + 332

10 = 12 + 32

11 = −12 − 32 + 52 − 72 − 92 − 112 − 132 − 152 + 172 − 192−
−212 + 232 + 252

12 = −12 − 32 − 52 − 72 + 92 + 112 − 132 + 152 + 172

13 = −12 − 32 − 52 − 72 + 92 + 112 − 132 − 152 + 172

14 = −12 − 32 − 52 + 72

15 = −12 − 32 + 52

Dorin Andrica and Eugen J.Ionascu Variations on a result of Erdös and Surányi



The above examples of Erdös-Surányi sequences are particular
cases of the following result

Theorem 1.(M.O. Drimbe, ‘88, [11]) Let f ∈ Q[X ] be a
polynomial such that for any n ∈ Z, f (n) is an integer. If the
greatest common factor of the terms of the sequence {f (n)}n≥1 is
equal to 1, then {f (n)}n≥1 is an Erdös-Surányi sequence.

Using this result, we can obtain other examples of Erdös-Surányi
sequences : an = (an − 1)k for any a ≥ 2, and an =

(n+s
s

)
for any

s ≥ 2. Note that it is difficult to obtain a proof by induction for
these sequences, similar to those given for the previous examples.

Dorin Andrica and Eugen J.Ionascu Variations on a result of Erdös and Surányi



2 Some general results

Recall that a sequence of distinct positive integers is complete if
every positive integer can be written as a sum of some distinct of
its terms. An important result concerning the Erdös-Surányi
sequences is the following

Theorem 2.(M.O. Drimbe, ‘83, [10]) Let {am}m≥1 be a sequence
of distinct positive integers such that a1 = 1 and for every n ≥ 1,
an+1 ≤ a1 + · · ·+ an + 1. If the sequence contains infinitely many
odd integers, then it is a Erdös-Surányi sequence.

Unfortunately, the sequences mentioned in Section 1 do not satisfy
the condition an+1 ≤ a1 + · · ·+ an + 1, n ≥ 1, in Theorem 2 so, we
cannot use this result to prove they are Erdös-Surányi sequences.
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The following integral formula shows the number of representations
of an integer for a fixed n.

Theorem 3. (D. Andrica and D. Văcăreţu,‘06, [4]) Given a
Erdös-Surányi sequence {am}m≥1, then the number of
representations of k ∈ [−un, un], where un = a1 + · · ·+ an, in the
form ±a1 ± a2 ± · · · ± an, for some choices of signs + and −,
denoted here by An(k), is given by

An(k) =
2n

π

∫ π

0
cos(kt)

k∏
j=1

cos(aj t)dt. (1)
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3 The signum equation

For an Erdös-Surányi sequence a = {am}m≥1, the signum equation
of a is

±a1 ± a2 ± · · · ± an = 0. (2)

For a fixed integer n, a solution to the signum equation is a choice
of signs + and − such that (2) holds.
Denote by Sa(n) the number of solutions of the equation (2).
Clearly, if 2 does not divide un, where un = a1 + · · ·+ un, then we
have Sa(n) = 0.
Here are few equivalent properties for Sa(n) (see [3]).
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1. Sa(n)/2n is the unique real number α having the property that
the function f : R→ R, defined by

f (x) =


cos a1

x cos a2
x · · · cos

an
x if x 6= 0

α if x = 0,

is a derivative.
2. Sa(n) is the term not depending on z in the development of

(za1 +
1
za1

)(za2 +
1
za2

) · · · (zan +
1
zan

).

3. Sa(n) is the coefficient of zun/2 in the polynomial

(1 + za1)(1 + za2) · · · (1 + zan).
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4. The following integral formula holds

Sa(n) =
2n−1

π

∫ 2π

0
cos a1t cos a2t · · · cos antdt. (3)

5. Sa(n) is the number of ordered bipartitions into classes having
equal sums of the set {a1, a2, · · · , an}.

6. Sa(n) is the number of partitions of un/2 into distinct parts, if 2
divides un, and Sa(n) = 0 otherwise.

7. Sa(n) is the number of distinct subsets of {a1, a2, · · · , an} whose
elements sum to un/2 if 2 divides un, and Sa(n) = 0 otherwise.
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To study the asymptotic behavior of Sa(n), when n→∞, is a very
challenged problem. For instance, for the sequence an = nk , k ≥ 2,
in this moment we don’t have a proof for the relation

lim
n→∞

Sk(n)

2nn−
2k+1

2
=

√
2(2k + 1)

π
,

where Sk(n) stands for Sa(n) in this case. For k = 1 the previous
relation was called the Andrica-Tomescu Conjecture [3], and it was
recently proved by B.Sullivan [21].
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The n-range of an Erdös-Surányi sequence

For a fixed n ≥ 1, define the n-range Ra(n) of a = {am}m≥1 to be
the set consisting in all integers

± a1 ± a2 ± · · · ± an. (4)

Clearly, for every n ≥ 1, the n-range Ra(n) is a symmetric set with
respect 0.
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For instance, to determine the range R1(n) for the sequence
am = m, was a 2011 Romanian Olympiad problem. Let us include
an answer to this problem. The greatest element of the set R1(n)
is the triangular number Tn := 1 + 2 + · · ·+ n = n(n+1)

2 , and the
smallest element of R1(n) is clearly −Tn. Also, the difference of
any two elements of R1(n) is an even number. Hence all elements
of R1(n) are of the same parity.
We claim that

R1(n) = {−Tn,−Tn + 2, · · · ,Tn − 2,Tn}. (5)
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Let us define a map on the elements of R1(n) \ {Tn} having values
in R1(n). First, if x ∈ R1(n) \ {Tn} is an element for which the
writing begins with −1, then by changing −1 by +1, we get
x + 2 ∈ R1(n). If the writing of x begins with +1, then consider
the first term in the sum with sign −. Such a term exists unless
x = Tn. In this case we have

x = 1 + 2 + · · ·+ (j − 1)− j ± · · · ± n.

By changing the signs of terms j − 1 and j , it follows that
x + 2 ∈ R1(n). This shows the claim in (5).
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For k = 2 the situation with the n-range R2(n) is almost the same
as in case k = 1 but there is an interesting new phenomenon,
although expected since {m2}m≥1 is a Erdös-Surányi sequence as
we have seen. Let us define the set

R2(n) = {−
∑

2
(n),−

∑
2
(n) + 2, · · · ,

∑
2
(n)− 2,

∑
2
(n)},

where
∑

2(n) = 12 + 22 + · · ·+ n2 = n(n+1)(2n+1)
6 .

Theorem 3.(D. Andrica and E.J. Ionaşcu,‘13, [2]) For n ∈ N,
R2(n) = R2(n) \ E2(n), where

E2(n) = {±(
∑

2(n)− 2j) : j ∈ E} and

E := {2, 3, 6, 7, 8, 11, 12, 15, 18, 19, 22, 23, 24, 27, 28, 31, 32, 33,

43, 44, 47, 48, 60, 67, 72, 76, 92, 96, 108, 112, 128}.
(6)
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The exceptional set of an Erdös-Surányi sequence

For a sequence of distinct positive integers a = {am}m≥1 define the
exceptional set of a to be the set E (a) consisting in all positive
integers that cannot be represented as a sum of distinct terms of a.

The exceptional set of the sequence am = m2 is

E := {2, 3, 6, 7, 8, 11, 12, 15, 18, 19, 22, 23, 24, 27, 28, 31, 32, 33,

43, 44, 47, 48, 60, 67, 72, 76, 92, 96, 108, 112, 128}.
(7)

Dorin Andrica and Eugen J.Ionascu Variations on a result of Erdös and Surányi



For k = 3, a similar result can be stated. The list of the numbers
(A001476) which cannot be represented as a sum of distinct cubes
has 2788 terms. This was obtained by R. E. Dressler and T. Parker
in [9].

For k = 4 the exceptional set of numbers (A046039) has 889576
elements.
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In [20], it is denoted by Pn(k) the number of partitions of k into
distinct parts from 1, 2n, 3n, . . . , and it is proved that for each n
there are only a finite number of integers which are not the sums of
distinct nth powers. That is, there is a positive integer Nn
depending only on n such that Pn(k) > 0 for all k > Nn. This
result was extended by H. E. Richert ([17]) to a more general class
of sequences.
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As we have seen for the sequence of squares and of cubes, it is
challenging to determine the exceptional set for a given
Erdös-Surányi sequence. For a better understanding of the difficulty
of this problem, we mention here few more examples.
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Example 1 : Triangular numbers

The sequence t of triangular numbers Tn = n(n+1)
2 , (n ≥ 1),

satisfies for every m ≥ 1 the relation
Tm+3 − Tm+3 − Tm+3 + Tm = 2. Since we may write 1 = T1 and
2 = −T1 + T2, it follows by induction that t is an Erdös-Surányi
sequence. According to the result of H. E. Richert ([17]), its
exceptional set is E (t) = {2, 5, 8, 12, 23, 33}.
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Example 2 : The sequence of primes

It is also known that the sequence of primes is an Erdös-Surányi
sequence. A nice proof based on Theorem 1 combined with
Bertrand’s postulate is given by M.O. Drimbe ([10], Proposition 4).
According to the result of R. E. Dressler [8], every positive integer,
except 1, 2 and 6, can be written as the sum of distinct primes,
that is the exceptional set of the sequence p of primes is
E (p) = {1, 4, 6}.
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Example 3 : Fibonacci numbers

Finally, it is not difficult to check that the hypotheses in Theorem 1
are satisfied for the Fibonacci sequence F0 = 0, F1 = 1,
Fn+2 = Fn+1 + Fn, n ≥ 0. Thus, {Fn} is an Erdös-Surányi
sequence. On the other hand, it is more or less known Zeckendorf’s
theorem in [24], which states that every positive integer can be
represented uniquely as the sum of one or more distinct Fibonacci
numbers in such a way that the sum does not include two
consecutive Fibonacci numbers. Such a sum is called Zeckendorf
representation and it is related to the Fibonacci coding of a positive
integer. In this case, the exceptional set E (f) of the Fibonacci
sequence, say f, is the empty set.
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Example 4 : Odd squares

We have seen in the first section that an interesting example of
Erdös-Surányi sequence is given by am = (2m − 1)2, the squares of
the odd integers. The exceptional set seems to contain 534
numbers (OEIS, the sequence A167703), but in this moment we
don’t know a proof for this property

2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,

27, 28, 29, 30, 31, 32, 33, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,

51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,

72, 73, 76, 77, 78, 79, 80, 85, · · · , 1922
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Conjecture 1. Every integer ≥ 1923 can be written as a sum of
distinct odd squares.

For instance we can write
1923 = 112 + 292 + 312, 1924 = 12 + 112 + 292 + 312, 1925 =
12 + 32 + 152 + 272 + 312, 1926 = 12 + 32 + 112 + 152 + 272 + 292

Conjecture 2. The exceptional set of every Erdös-Surányi
sequence is finite.
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